Cargando…
A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa
The bacterial second messenger cyclic-di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. The human pathogen Pseudomonas aeruginosa encodes 17 diguanylate cyclase (DGCs) proteins which are required for c-di-GMP synthesis. Therefore, the c-di-GMP regulatory sys...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shared Science Publishers OG
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278518/ https://www.ncbi.nlm.nih.gov/pubmed/32548178 http://dx.doi.org/10.15698/mic2020.06.720 |
_version_ | 1783543351646093312 |
---|---|
author | Chen, Gukui Liang, Haihua |
author_facet | Chen, Gukui Liang, Haihua |
author_sort | Chen, Gukui |
collection | PubMed |
description | The bacterial second messenger cyclic-di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. The human pathogen Pseudomonas aeruginosa encodes 17 diguanylate cyclase (DGCs) proteins which are required for c-di-GMP synthesis. Therefore, the c-di-GMP regulatory system in P. aeruginosa is highly sophisticated. SiaD, one of the DGC enzymes, is co-transcribed with SiaA/B/C and has been shown to be essential for bacterial aggregate formation in response to environmental stress. However, the detailed function of this operon remains unknown. In our recent paper (Chen et al., doi: 10.15252/embj.2019103412), we have demonstrated that the siaABCD operon encodes a signaling network that regulates biofilm and aggregate formation by modulating the enzymatic activity of SiaD. Among this signaling system, SiaC interaction with SiaD promotes the diguanylate cyclase activity of SiaD and subsequently facilities the intracellular c-di-GMP synthesis; SiaB is a unique protein kinase that phosphorylates SiaC, whereas SiaA phosphatase can dephosphorylate SiaC. The phosphorylation state of SiaC is critical for its interaction with SiaD, which will switch on or off the DGC activity of SiaD. This report unveils a novel signaling system that controls biofilm formation, which may provide a potential target for developing antimicrobial drugs. |
format | Online Article Text |
id | pubmed-7278518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Shared Science Publishers OG |
record_format | MEDLINE/PubMed |
spelling | pubmed-72785182020-06-15 A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa Chen, Gukui Liang, Haihua Microb Cell Microreview The bacterial second messenger cyclic-di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. The human pathogen Pseudomonas aeruginosa encodes 17 diguanylate cyclase (DGCs) proteins which are required for c-di-GMP synthesis. Therefore, the c-di-GMP regulatory system in P. aeruginosa is highly sophisticated. SiaD, one of the DGC enzymes, is co-transcribed with SiaA/B/C and has been shown to be essential for bacterial aggregate formation in response to environmental stress. However, the detailed function of this operon remains unknown. In our recent paper (Chen et al., doi: 10.15252/embj.2019103412), we have demonstrated that the siaABCD operon encodes a signaling network that regulates biofilm and aggregate formation by modulating the enzymatic activity of SiaD. Among this signaling system, SiaC interaction with SiaD promotes the diguanylate cyclase activity of SiaD and subsequently facilities the intracellular c-di-GMP synthesis; SiaB is a unique protein kinase that phosphorylates SiaC, whereas SiaA phosphatase can dephosphorylate SiaC. The phosphorylation state of SiaC is critical for its interaction with SiaD, which will switch on or off the DGC activity of SiaD. This report unveils a novel signaling system that controls biofilm formation, which may provide a potential target for developing antimicrobial drugs. Shared Science Publishers OG 2020-04-23 /pmc/articles/PMC7278518/ /pubmed/32548178 http://dx.doi.org/10.15698/mic2020.06.720 Text en Copyright: © 2020 Chen and Liang https://creativecommons.org/licenses/by/4.0/ This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged. |
spellingShingle | Microreview Chen, Gukui Liang, Haihua A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa |
title | A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa |
title_full | A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa |
title_fullStr | A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa |
title_full_unstemmed | A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa |
title_short | A novel c-di-GMP signal system regulates biofilm formation in Pseudomonas aeruginosa |
title_sort | novel c-di-gmp signal system regulates biofilm formation in pseudomonas aeruginosa |
topic | Microreview |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278518/ https://www.ncbi.nlm.nih.gov/pubmed/32548178 http://dx.doi.org/10.15698/mic2020.06.720 |
work_keys_str_mv | AT chengukui anovelcdigmpsignalsystemregulatesbiofilmformationinpseudomonasaeruginosa AT lianghaihua anovelcdigmpsignalsystemregulatesbiofilmformationinpseudomonasaeruginosa AT chengukui novelcdigmpsignalsystemregulatesbiofilmformationinpseudomonasaeruginosa AT lianghaihua novelcdigmpsignalsystemregulatesbiofilmformationinpseudomonasaeruginosa |