Cargando…

An Infant Milk Formula Supplemented with Heat-Treated Probiotic Bifidobacterium animalis subsp. lactis CECT 8145, Reduces Fat Deposition in C. elegans and Augments Acetate and Lactate in a Fermented Infant Slurry

Pediatric obesity has a growing health and socio-economical impact due to cardiovascular and metabolic complications in adult life. Some recent studies suggest that live or heat-treated probiotics have beneficial effects in preventing fat deposition and obesity in preclinical and clinical sets. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Ángela, Gonzalez, Nuria, Terrén, Ana, García, Antonio, Martinez-Blanch, Juan Francisco, Illescas, Vanessa, Morales, Javier, Maroto, Marcos, Genovés, Salvador, Ramón, Daniel, Martorell, Patricia, Chenoll, Empar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278570/
https://www.ncbi.nlm.nih.gov/pubmed/32438563
http://dx.doi.org/10.3390/foods9050652
Descripción
Sumario:Pediatric obesity has a growing health and socio-economical impact due to cardiovascular and metabolic complications in adult life. Some recent studies suggest that live or heat-treated probiotics have beneficial effects in preventing fat deposition and obesity in preclinical and clinical sets. Here, we have explored the effects of heat-treated probiotic Bifidobacterium animalis subsp. lactis CECT 8145 (HT-BPL1), added as a supplement on an infant milk formula (HT-BPL1-IN), on Caenorhabditis elegans fat deposition and short-chain fatty acids (SCFAs) and lactate, using fermented baby fecal slurries. We have found that HT-BPL1-IN significantly reduced fat deposition in C. elegans, at the time it drastically augmented the generation of some SCFAs, particulary acetate and organic acid lactate. Data suggest that heat-treated BPL1 maintains its functional activities when added to an infant powder milk formula.