Cargando…

Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains

Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Sofy, Ahmed R., Abd El Haliem, Naglaa F., Refaey, Ehab E., Hmed, Ahmed A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278617/
https://www.ncbi.nlm.nih.gov/pubmed/32456227
http://dx.doi.org/10.3390/foods9050673
_version_ 1783543372434112512
author Sofy, Ahmed R.
Abd El Haliem, Naglaa F.
Refaey, Ehab E.
Hmed, Ahmed A.
author_facet Sofy, Ahmed R.
Abd El Haliem, Naglaa F.
Refaey, Ehab E.
Hmed, Ahmed A.
author_sort Sofy, Ahmed R.
collection PubMed
description Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-3 exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.
format Online
Article
Text
id pubmed-7278617
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72786172020-06-12 Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains Sofy, Ahmed R. Abd El Haliem, Naglaa F. Refaey, Ehab E. Hmed, Ahmed A. Foods Article Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-3 exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective. MDPI 2020-05-23 /pmc/articles/PMC7278617/ /pubmed/32456227 http://dx.doi.org/10.3390/foods9050673 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sofy, Ahmed R.
Abd El Haliem, Naglaa F.
Refaey, Ehab E.
Hmed, Ahmed A.
Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
title Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
title_full Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
title_fullStr Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
title_full_unstemmed Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
title_short Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains
title_sort polyvalent phage conshp-3 as a natural antimicrobial agent showing lytic and antibiofilm activities against antibiotic-resistant coagulase-negative staphylococci strains
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278617/
https://www.ncbi.nlm.nih.gov/pubmed/32456227
http://dx.doi.org/10.3390/foods9050673
work_keys_str_mv AT sofyahmedr polyvalentphageconshp3asanaturalantimicrobialagentshowinglyticandantibiofilmactivitiesagainstantibioticresistantcoagulasenegativestaphylococcistrains
AT abdelhaliemnaglaaf polyvalentphageconshp3asanaturalantimicrobialagentshowinglyticandantibiofilmactivitiesagainstantibioticresistantcoagulasenegativestaphylococcistrains
AT refaeyehabe polyvalentphageconshp3asanaturalantimicrobialagentshowinglyticandantibiofilmactivitiesagainstantibioticresistantcoagulasenegativestaphylococcistrains
AT hmedahmeda polyvalentphageconshp3asanaturalantimicrobialagentshowinglyticandantibiofilmactivitiesagainstantibioticresistantcoagulasenegativestaphylococcistrains