Cargando…

The Hepatoprotective Effect of Taurisolo, a Nutraceutical Enriched in Resveratrol and Polyphenols, Involves Activation of Mitochondrial Metabolism in Mice Liver

Liver diseases affect millions of people worldwide. In most of the cases, severe hepatic dysfunction and liver cancer stem from mild and common clinical signs including hepatic steatosis, insulin resistance, liver inflammation, and oxidative stress, all together referred to as Nonalcoholic Fatty Liv...

Descripción completa

Detalles Bibliográficos
Autores principales: Badolati, Nadia, Masselli, Raffaello, Sommella, Eduardo, Sagliocchi, Serena, Di Minno, Alessandro, Salviati, Emanuela, Campiglia, Pietro, Dentice, Monica, Tenore, Gian Carlo, Stornaiuolo, Mariano, Novellino, Ettore
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278674/
https://www.ncbi.nlm.nih.gov/pubmed/32403305
http://dx.doi.org/10.3390/antiox9050410
Descripción
Sumario:Liver diseases affect millions of people worldwide. In most of the cases, severe hepatic dysfunction and liver cancer stem from mild and common clinical signs including hepatic steatosis, insulin resistance, liver inflammation, and oxidative stress, all together referred to as Nonalcoholic Fatty Liver Disease (NAFLD). Nutraceuticals endowed with antioxidant activity have been shown to reduce NAFLD risk factors and exert hepatoprotective effects. Here, we test the protective effect exerted on liver by the antioxidant Taurisolo, a nutraceutical formulation produced by grape pomace and enriched in Resveratrol and Polyphenols. We analyze the effect of Taurisolo on liver cells by profiling the metabolome of in vitro cultured hepatic HuH7 cells and of C57BL-6J mice fed a High Fat Diet and treated with the nutraceutical. Both in vitro and in vivo, we provide evidence that Taurisolo reduces risk factor markers associated with NAFLD. Taurisolo stimulates glucose uptake and reduces hepatic cholesterol and serum triglycerides. Furthermore, we give new insights into the mechanism of action of Taurisolo. The nutraceutical increases mitochondrial activity and promotes respiration and ATP production, fostering catabolic reactions like fatty acid β-oxidation and amino acid catabolism. On the contrary, Taurisolo reduces anabolic reactions like biosynthesis of cholesterol, bile acids, and plasma membrane lipids.