Cargando…
Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains
The use of sourdough fermentation and whole grain flours in baked goods manufacturing are known to enhance their functional and nutritional features. In this context, it is necessary to select the most suitable lactic acid bacteria strains and flour combination to achieve this goal. A characterizati...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278840/ https://www.ncbi.nlm.nih.gov/pubmed/32429251 http://dx.doi.org/10.3390/foods9050640 |
Sumario: | The use of sourdough fermentation and whole grain flours in baked goods manufacturing are known to enhance their functional and nutritional features. In this context, it is necessary to select the most suitable lactic acid bacteria strains and flour combination to achieve this goal. A characterization of 70 lactobacilli strains based on pro-technological and nutritional properties was carried out. The screening allowed the selection of 10 strains that were used to ferment sourdoughs made with two varieties of common wheat, the conventional red-grained cv Aubusson, a blue-grained variety rich in anthocyanins cv Skorpion, and a hull-less barley variety, cv Rondo. From each fermented sourdough, a water soluble extract was obtained and evaluated for its antioxidant activity performed on cultured cells (RAW 264.7 murine macrophage) by assaying Reactive Oxygen Species (ROS) content. Sourdoughs made with pigmented wheat and barley, had an antioxidant activity greater than that recovered in those made with conventional wheat flour, in spite they have been inoculated with the same LAB strains. Results highlighted the interdependence between flour and the inoculated lactic acid bacteria that has to be taken into account for the development of healthy breads exploiting high functional value cereals through biotechnological processes. |
---|