Cargando…
Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance
OBJECTIVE: Insulin resistance develops prior to the onset of overt type 2 diabetes, making its early detection vital. Direct accurate evaluation is currently only possible with complex examinations like the stable isotope‐based hyperinsulinemic euglycemic clamp (HIEC). Metabolomic profiling enables...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278901/ https://www.ncbi.nlm.nih.gov/pubmed/32523723 http://dx.doi.org/10.1002/osp4.402 |
_version_ | 1783543438039318528 |
---|---|
author | Hartstra, Annick V. de Groot, Pieter F. Mendes Bastos, Diogo Levin, Evgeni Serlie, Mireille J. Soeters, Maarten R. Pekmez, Ceyda T. Dragsted, Lars O. Ackermans, Mariette T. Groen, Albert K. Nieuwdorp, Max |
author_facet | Hartstra, Annick V. de Groot, Pieter F. Mendes Bastos, Diogo Levin, Evgeni Serlie, Mireille J. Soeters, Maarten R. Pekmez, Ceyda T. Dragsted, Lars O. Ackermans, Mariette T. Groen, Albert K. Nieuwdorp, Max |
author_sort | Hartstra, Annick V. |
collection | PubMed |
description | OBJECTIVE: Insulin resistance develops prior to the onset of overt type 2 diabetes, making its early detection vital. Direct accurate evaluation is currently only possible with complex examinations like the stable isotope‐based hyperinsulinemic euglycemic clamp (HIEC). Metabolomic profiling enables the detection of thousands of plasma metabolites, providing a tool to identify novel biomarkers in human obesity. DESIGN: Liquid chromatography mass spectrometry–based untargeted plasma metabolomics was applied in 60 participants with obesity with a large range of peripheral insulin sensitivity as determined via a two‐step HIEC with stable isotopes [6,6‐(2)H(2)]glucose and [1,1,2,3,3‐(2)H(5)]glycerol. This additionally enabled measuring insulin‐regulated lipolysis, which combined with metabolomics, to the knowledge of this research group, has not been reported on before. RESULTS: Several plasma metabolites were identified that significantly correlated with glucose and lipid fluxes, led by plasma (gamma‐glutamyl)citrulline, followed by betaine, beta‐cryptoxanthin, fructosyllysine, octanylcarnitine, sphingomyelin (d18:0/18:0, d19:0/17:0) and thyroxine. Subsequent machine learning analysis showed that a panel of these metabolites derived from a number of metabolic pathways may be used to predict insulin resistance, dominated by non‐essential amino acid citrulline and its metabolite gamma‐glutamylcitrulline. CONCLUSION: This approach revealed a number of plasma metabolites that correlated reasonably well with glycemic and lipolytic flux parameters, measured using gold standard techniques. These metabolites may be used to predict the rate of glucose disposal in humans with obesity to a similar extend as HOMA, thus providing potential novel biomarkers for insulin resistance. |
format | Online Article Text |
id | pubmed-7278901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72789012020-06-09 Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance Hartstra, Annick V. de Groot, Pieter F. Mendes Bastos, Diogo Levin, Evgeni Serlie, Mireille J. Soeters, Maarten R. Pekmez, Ceyda T. Dragsted, Lars O. Ackermans, Mariette T. Groen, Albert K. Nieuwdorp, Max Obes Sci Pract Original Articles OBJECTIVE: Insulin resistance develops prior to the onset of overt type 2 diabetes, making its early detection vital. Direct accurate evaluation is currently only possible with complex examinations like the stable isotope‐based hyperinsulinemic euglycemic clamp (HIEC). Metabolomic profiling enables the detection of thousands of plasma metabolites, providing a tool to identify novel biomarkers in human obesity. DESIGN: Liquid chromatography mass spectrometry–based untargeted plasma metabolomics was applied in 60 participants with obesity with a large range of peripheral insulin sensitivity as determined via a two‐step HIEC with stable isotopes [6,6‐(2)H(2)]glucose and [1,1,2,3,3‐(2)H(5)]glycerol. This additionally enabled measuring insulin‐regulated lipolysis, which combined with metabolomics, to the knowledge of this research group, has not been reported on before. RESULTS: Several plasma metabolites were identified that significantly correlated with glucose and lipid fluxes, led by plasma (gamma‐glutamyl)citrulline, followed by betaine, beta‐cryptoxanthin, fructosyllysine, octanylcarnitine, sphingomyelin (d18:0/18:0, d19:0/17:0) and thyroxine. Subsequent machine learning analysis showed that a panel of these metabolites derived from a number of metabolic pathways may be used to predict insulin resistance, dominated by non‐essential amino acid citrulline and its metabolite gamma‐glutamylcitrulline. CONCLUSION: This approach revealed a number of plasma metabolites that correlated reasonably well with glycemic and lipolytic flux parameters, measured using gold standard techniques. These metabolites may be used to predict the rate of glucose disposal in humans with obesity to a similar extend as HOMA, thus providing potential novel biomarkers for insulin resistance. John Wiley and Sons Inc. 2020-02-07 /pmc/articles/PMC7278901/ /pubmed/32523723 http://dx.doi.org/10.1002/osp4.402 Text en © 2020 The Authors. Obesity Science & Practice published by World Obesity and The Obesity Society and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Hartstra, Annick V. de Groot, Pieter F. Mendes Bastos, Diogo Levin, Evgeni Serlie, Mireille J. Soeters, Maarten R. Pekmez, Ceyda T. Dragsted, Lars O. Ackermans, Mariette T. Groen, Albert K. Nieuwdorp, Max Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
title | Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
title_full | Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
title_fullStr | Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
title_full_unstemmed | Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
title_short | Correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
title_sort | correlation of plasma metabolites with glucose and lipid fluxes in human insulin resistance |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278901/ https://www.ncbi.nlm.nih.gov/pubmed/32523723 http://dx.doi.org/10.1002/osp4.402 |
work_keys_str_mv | AT hartstraannickv correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT degrootpieterf correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT mendesbastosdiogo correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT levinevgeni correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT serliemireillej correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT soetersmaartenr correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT pekmezceydat correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT dragstedlarso correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT ackermansmariettet correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT groenalbertk correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance AT nieuwdorpmax correlationofplasmametaboliteswithglucoseandlipidfluxesinhumaninsulinresistance |