Cargando…

Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways

Bone infection or osteomyelitis is usually a complication of inflammation-related traumatic bone injury. Selenium has been shown to have potential cytoprotective effects and the ability to reduce oxidative stress and apoptotic events in osteomyelitis, but the exact mechanism remains unclear. Here, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yan, Jia, Zhen, Xu, YongQiang, Qin, MeiLan, Feng, SiYin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Genética 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278977/
https://www.ncbi.nlm.nih.gov/pubmed/32511663
http://dx.doi.org/10.1590/1678-4685-GMB-2019-0153
Descripción
Sumario:Bone infection or osteomyelitis is usually a complication of inflammation-related traumatic bone injury. Selenium has been shown to have potential cytoprotective effects and the ability to reduce oxidative stress and apoptotic events in osteomyelitis, but the exact mechanism remains unclear. Here, we used LPS-induced apoptotic MC3T3-E1 cells and aimed to confirm selenium's protective effect on cell apoptosis as well as to investigate the underlying mechanisms of this role. Our investigation confirmed selenium-mediated inhibition of LPS-induced cell apoptosis and ROS accumulation in MC3T3-E1 cells. Upon selenium treatment, the bcl-2 levels were upregulated, while the levels of Bax and cyto-C were down-regulated. Furthermore, these effects were accompanied by the suppression of miR-155 and the phosphorylation of protein kinase B (Akt). A more in-depth study demonstrated that LY294002 (a specific inhibitor of PI3K), abolished the selenium-mediated cytoprotective effect of MC3T3-E1 cells against LPS-induced injury and down-regulation of miR-155. In general, these results demonstrated that selenium exerts a cytoprotective effect by attenuating cell apoptosis and oxidative damage via a PI3K/Akt/miR-155-dependent mechanism.