Cargando…
Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways
Bone infection or osteomyelitis is usually a complication of inflammation-related traumatic bone injury. Selenium has been shown to have potential cytoprotective effects and the ability to reduce oxidative stress and apoptotic events in osteomyelitis, but the exact mechanism remains unclear. Here, w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Genética
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278977/ https://www.ncbi.nlm.nih.gov/pubmed/32511663 http://dx.doi.org/10.1590/1678-4685-GMB-2019-0153 |
_version_ | 1783543456134594560 |
---|---|
author | Huang, Yan Jia, Zhen Xu, YongQiang Qin, MeiLan Feng, SiYin |
author_facet | Huang, Yan Jia, Zhen Xu, YongQiang Qin, MeiLan Feng, SiYin |
author_sort | Huang, Yan |
collection | PubMed |
description | Bone infection or osteomyelitis is usually a complication of inflammation-related traumatic bone injury. Selenium has been shown to have potential cytoprotective effects and the ability to reduce oxidative stress and apoptotic events in osteomyelitis, but the exact mechanism remains unclear. Here, we used LPS-induced apoptotic MC3T3-E1 cells and aimed to confirm selenium's protective effect on cell apoptosis as well as to investigate the underlying mechanisms of this role. Our investigation confirmed selenium-mediated inhibition of LPS-induced cell apoptosis and ROS accumulation in MC3T3-E1 cells. Upon selenium treatment, the bcl-2 levels were upregulated, while the levels of Bax and cyto-C were down-regulated. Furthermore, these effects were accompanied by the suppression of miR-155 and the phosphorylation of protein kinase B (Akt). A more in-depth study demonstrated that LY294002 (a specific inhibitor of PI3K), abolished the selenium-mediated cytoprotective effect of MC3T3-E1 cells against LPS-induced injury and down-regulation of miR-155. In general, these results demonstrated that selenium exerts a cytoprotective effect by attenuating cell apoptosis and oxidative damage via a PI3K/Akt/miR-155-dependent mechanism. |
format | Online Article Text |
id | pubmed-7278977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Sociedade Brasileira de Genética |
record_format | MEDLINE/PubMed |
spelling | pubmed-72789772020-06-15 Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways Huang, Yan Jia, Zhen Xu, YongQiang Qin, MeiLan Feng, SiYin Genet Mol Biol Cellular, Molecular and Developmental Genetics Bone infection or osteomyelitis is usually a complication of inflammation-related traumatic bone injury. Selenium has been shown to have potential cytoprotective effects and the ability to reduce oxidative stress and apoptotic events in osteomyelitis, but the exact mechanism remains unclear. Here, we used LPS-induced apoptotic MC3T3-E1 cells and aimed to confirm selenium's protective effect on cell apoptosis as well as to investigate the underlying mechanisms of this role. Our investigation confirmed selenium-mediated inhibition of LPS-induced cell apoptosis and ROS accumulation in MC3T3-E1 cells. Upon selenium treatment, the bcl-2 levels were upregulated, while the levels of Bax and cyto-C were down-regulated. Furthermore, these effects were accompanied by the suppression of miR-155 and the phosphorylation of protein kinase B (Akt). A more in-depth study demonstrated that LY294002 (a specific inhibitor of PI3K), abolished the selenium-mediated cytoprotective effect of MC3T3-E1 cells against LPS-induced injury and down-regulation of miR-155. In general, these results demonstrated that selenium exerts a cytoprotective effect by attenuating cell apoptosis and oxidative damage via a PI3K/Akt/miR-155-dependent mechanism. Sociedade Brasileira de Genética 2020-06-08 /pmc/articles/PMC7278977/ /pubmed/32511663 http://dx.doi.org/10.1590/1678-4685-GMB-2019-0153 Text en Copyright © 2020, Sociedade Brasileira de Genética. https://creativecommons.org/licenses/by/4.0/ License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited. |
spellingShingle | Cellular, Molecular and Developmental Genetics Huang, Yan Jia, Zhen Xu, YongQiang Qin, MeiLan Feng, SiYin Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways |
title | Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways |
title_full | Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways |
title_fullStr | Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways |
title_full_unstemmed | Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways |
title_short | Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways |
title_sort | selenium protects against lps-induced mc3t3-e1 cells apoptosis through modulation of microrna-155 and pi3k/akt signaling pathways |
topic | Cellular, Molecular and Developmental Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278977/ https://www.ncbi.nlm.nih.gov/pubmed/32511663 http://dx.doi.org/10.1590/1678-4685-GMB-2019-0153 |
work_keys_str_mv | AT huangyan seleniumprotectsagainstlpsinducedmc3t3e1cellsapoptosisthroughmodulationofmicrorna155andpi3kaktsignalingpathways AT jiazhen seleniumprotectsagainstlpsinducedmc3t3e1cellsapoptosisthroughmodulationofmicrorna155andpi3kaktsignalingpathways AT xuyongqiang seleniumprotectsagainstlpsinducedmc3t3e1cellsapoptosisthroughmodulationofmicrorna155andpi3kaktsignalingpathways AT qinmeilan seleniumprotectsagainstlpsinducedmc3t3e1cellsapoptosisthroughmodulationofmicrorna155andpi3kaktsignalingpathways AT fengsiyin seleniumprotectsagainstlpsinducedmc3t3e1cellsapoptosisthroughmodulationofmicrorna155andpi3kaktsignalingpathways |