Cargando…

Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells

Two donor-π-spacer-acceptor (D-π-A) organic dyes were designed as photochromic dyes with the same π-spacer and acceptor but different donors, based on their electron-donating strength. Various structural, electronic, and optical properties, chemical reactivity parameters, and certain crucial factors...

Descripción completa

Detalles Bibliográficos
Autores principales: Rashid, Md Al Mamunur, Hayati, Dini, Kwak, Kyungwon, Hong, Jongin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279488/
https://www.ncbi.nlm.nih.gov/pubmed/32397475
http://dx.doi.org/10.3390/nano10050914
Descripción
Sumario:Two donor-π-spacer-acceptor (D-π-A) organic dyes were designed as photochromic dyes with the same π-spacer and acceptor but different donors, based on their electron-donating strength. Various structural, electronic, and optical properties, chemical reactivity parameters, and certain crucial factors that affect short-circuit current density (J(sc)) and open circuit voltage (V(oc)) were investigated computationally using density functional theory and time-dependent density functional theory. The trans-cis isomerization of these azobenzene-based dyes and its effect on their properties was studied in detail. Furthermore, the dye-(TiO(2))(9) anatase nanoparticle system was simulated to understand the electronic structure of the interface. Based on the results, we justified how the trans-cis isomerization and different donor groups influence the physical properties as well as the photovoltaic performance of the resultant dye-sensitized solar cells (DSSCs). These theoretical calculations can be used for the rapid screening of promising dyes and their optimization for photochromic DSSCs.