Cargando…

Electrospun Nanofibers for Chemical Separation

The separation and purification of specific chemicals from a mixture have become necessities for many environments, including agriculture, food science, and pharmaceutical and biomedical industries. Electrospun nanofiber membranes are promising materials for the separation of various species such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Najafi, Mesbah, Frey, Margaret W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279547/
https://www.ncbi.nlm.nih.gov/pubmed/32455530
http://dx.doi.org/10.3390/nano10050982
Descripción
Sumario:The separation and purification of specific chemicals from a mixture have become necessities for many environments, including agriculture, food science, and pharmaceutical and biomedical industries. Electrospun nanofiber membranes are promising materials for the separation of various species such as particles, biomolecules, dyes, and metals from liquids because of the combined properties of a large specific surface, light weight, high porosity, good connectivity, and tunable wettability. This paper reviews the recent progress in the design and fabrication of electrospun nanofibers for chemical separation. Different capture mechanisms including electrostatic, affinity, covalent bonding, chelation, and magnetic adsorption are explained and their distinct characteristics are highlighted. Finally, the challenges and future aspects of nanofibers for membrane applications are discussed.