Cargando…
Azithromycin decreases Chlamydia pneumoniae-mediated Interleukin-4 responses but not Immunoglobulin E responses
BACKGROUND: Chlamydia pneumoniae is an obligate intracellular bacterium that causes respiratory infection. There may exist an association between C. pneumoniae, asthma, and production of immunoglobulin (Ig) E responses in vitro. Interleukin (IL-4) is required for IgE production. OBJECTIVE: We previo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279567/ https://www.ncbi.nlm.nih.gov/pubmed/32511255 http://dx.doi.org/10.1371/journal.pone.0234413 |
Sumario: | BACKGROUND: Chlamydia pneumoniae is an obligate intracellular bacterium that causes respiratory infection. There may exist an association between C. pneumoniae, asthma, and production of immunoglobulin (Ig) E responses in vitro. Interleukin (IL-4) is required for IgE production. OBJECTIVE: We previously demonstrated that doxycycline suppresses C. pneumoniae-induced production of IgE and IL-4 responses in peripheral blood mononuclear cells (PBMC) from asthmatic subjects. Whereas macrolides have anti-chlamydial activity, their effect on in vitro anti-inflammatory (IgE) and IL-4 responses to C. pneumoniae have not been studied. METHODS: PBMC from IgE- adult atopic subjects (N = 5) were infected +/- C. pneumoniae BAL69, +/- azithromycin (0.1, 1.0 ug/mL) for 10 days. IL-4 and IgE levels were determined in supernatants by ELISA. IL-4 and IgE were detected in supernatants of PBMC (day 10). RESULTS: When azithromycin (0.1, 1.0 ug/ml) was added, IL-4 levels decreased. At low dose, IgE levels increased and at high dose, IgE levels decreased. When PBMC were infected with C. pneumoniae, both IL-4 and IgE levels decreased. Addition of azithromycin (0.1, 1.0 ug/mL) decreased IL-4 levels and had no effect on IgE levels. CONCLUSIONS: These findings indicate that azithromycin decreases IL-4 responses but has a bimodal effect on IgE responses in PBMC from atopic patients in vitro. |
---|