Cargando…
Multi-channel Image Registration of Cardiac MR Using Supervised Feature Learning with Convolutional Encoder-Decoder Network
It is difficult to register the images involving large deformation and intensity inhomogeneity. In this paper, a new multi-channel registration algorithm using modified multi-feature mutual information (α-MI) based on minimal spanning tree (MST) is presented. First, instead of relying on handcrafted...
Autores principales: | Lu, Xuesong, Qiao, Yuchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279923/ http://dx.doi.org/10.1007/978-3-030-50120-4_10 |
Ejemplares similares
-
Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation
por: Long, Jiao-Song, et al.
Publicado: (2021) -
Multi-level pooling encoder–decoder convolution neural network for MRI reconstruction
por: Karnjanapreechakorn, Sarattha, et al.
Publicado: (2022) -
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018) -
Image Segmentation Using Encoder-Decoder with Deformable Convolutions
por: Gurita, Andreea, et al.
Publicado: (2021) -
Brain CT registration using hybrid supervised convolutional neural network
por: Yuan, Hongmei, et al.
Publicado: (2021)