Cargando…
Diffusion Tensor Driven Image Registration: A Deep Learning Approach
Tracking microsctructural changes in the developing brain relies on accurate inter-subject image registration. However, most methods rely on either structural or diffusion data to learn the spatial correspondences between two or more images, without taking into account the complementary information...
Autores principales: | Grigorescu, Irina, Uus, Alena, Christiaens, Daan, Cordero-Grande, Lucilio, Hutter, Jana, Edwards, A. David, Hajnal, Joseph V., Modat, Marc, Deprez, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279925/ http://dx.doi.org/10.1007/978-3-030-50120-4_13 |
Ejemplares similares
-
Multi-channel Registration for Diffusion MRI: Longitudinal Analysis for the Neonatal Brain
por: Uus, Alena, et al.
Publicado: (2020) -
Harmonized Segmentation of Neonatal Brain MRI
por: Grigorescu, Irina, et al.
Publicado: (2021) -
Complex diffusion-weighted image estimation via matrix recovery under general noise models
por: Cordero-Grande, Lucilio, et al.
Publicado: (2019) -
Multi-Channel 4D Parametrized Atlas of Macro- and Microstructural Neonatal Brain Development
por: Uus, Alena, et al.
Publicado: (2021) -
On the need for bundle-specific microstructure kernels in diffusion MRI
por: Christiaens, Daan, et al.
Publicado: (2020)