Cargando…
Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration
We propose an unsupervised deep learning method for atlas-based registration to achieve segmentation and spatial alignment of the embryonic brain in a single framework. Our approach consists of two sequential networks with a specifically designed loss function to address the challenges in 3D first t...
Autores principales: | Bastiaansen, Wietske A. P., Rousian, Melek, Steegers-Theunissen, Régine P. M., Niessen, Wiro J., Koning, Anton, Klein, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279927/ http://dx.doi.org/10.1007/978-3-030-50120-4_4 |
Ejemplares similares
-
Computational methods for the analysis of early-pregnancy brain ultrasonography: a systematic review
por: Bastiaansen, Wietske A.P., et al.
Publicado: (2023) -
IVF with or without ICSI and the impact on human embryonic brain development: the Rotterdam Periconceptional Cohort
por: Husen, Sofie C, et al.
Publicado: (2021) -
Evaluation of embryonic posture using four‐dimensional ultrasound and virtual reality
por: Frudiger, Anne, et al.
Publicado: (2020) -
First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort
por: Rubini, Eleonora, et al.
Publicado: (2022) -
Periconceptional maternal dairy-rich dietary pattern is associated with prenatal cerebellar growth
por: Parisi, Francesca, et al.
Publicado: (2018)