Cargando…
Applying Machine Learning Models to Predict Medication Nonadherence in Crohn’s Disease Maintenance Therapy
OBJECTIVE: Medication adherence is crucial in the management of Crohn’s disease (CD), and yet the adherence remains low. This study aimed to develop machine learning models that can help predict CD patients of nonadherence to azathioprine (AZA), and thus assist caregivers to streamline the intervent...
Autores principales: | Wang, Lei, Fan, Rong, Zhang, Chen, Hong, Liwen, Zhang, Tianyu, Chen, Ying, Liu, Kai, Wang, Zhengting, Zhong, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280067/ https://www.ncbi.nlm.nih.gov/pubmed/32581518 http://dx.doi.org/10.2147/PPA.S253732 |
Ejemplares similares
-
Patients' Educational Program Could Improve Azathioprine Adherence in Crohn's Disease Maintenance Therapy
por: Wang, Lei, et al.
Publicado: (2020) -
Infliximab for Crohn’s Disease Patients with Perianal Fistulas: Better Image, Better Life
por: Hong, Liwen, et al.
Publicado: (2020) -
Prevalence of Sarcopenia and Its Effect on Postoperative Complications in Patients with Crohn's Disease
por: Zhang, Chen, et al.
Publicado: (2021) -
Improvement of psychological status after infliximab treatment in patients with newly diagnosed Crohn’s disease
por: Zhang, Maochen, et al.
Publicado: (2018) -
Dynamics of the Salivary Microbiome During Different Phases of Crohn's Disease
por: Zhang, Tianyu, et al.
Publicado: (2020)