Cargando…

Ghost spintronic THz-emitter-array microscope

Terahertz (THz) waves show great potential in nondestructive testing, biodetection and cancer imaging. Despite recent progress in THz wave near-field probes/apertures enabling raster scanning of an object’s surface, an efficient, nonscanning, noninvasive, deep subdiffraction imaging technique remain...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Si-Chao, Feng, Zheng, Li, Jiang, Tan, Wei, Du, Liang-Hui, Cai, Jianwang, Ma, Yuncan, He, Kang, Ding, Haifeng, Zhai, Zhao-Hui, Li, Ze-Ren, Qiu, Cheng-Wei, Zhang, Xi-Cheng, Zhu, Li-Guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280226/
https://www.ncbi.nlm.nih.gov/pubmed/32549979
http://dx.doi.org/10.1038/s41377-020-0338-4
Descripción
Sumario:Terahertz (THz) waves show great potential in nondestructive testing, biodetection and cancer imaging. Despite recent progress in THz wave near-field probes/apertures enabling raster scanning of an object’s surface, an efficient, nonscanning, noninvasive, deep subdiffraction imaging technique remains challenging. Here, we demonstrate THz near-field microscopy using a reconfigurable spintronic THz emitter array (STEA) based on the computational ghost imaging principle. By illuminating an object with the reconfigurable STEA followed by computing the correlation, we can reconstruct an image of the object with deep subdiffraction resolution. By applying an external magnetic field, in-line polarization rotation of the THz wave is realized, making the fused image contrast polarization-free. Time-of-flight (TOF) measurements of coherent THz pulses further enable objects at different distances or depths to be resolved. The demonstrated ghost spintronic THz-emitter-array microscope (GHOSTEAM) is a radically novel imaging tool for THz near-field imaging, opening paradigm-shifting opportunities for nonintrusive label-free bioimaging in a broadband frequency range from 0.1 to 30 THz (namely, 3.3–1000 cm(−1)).