Cargando…
G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study
Controlling for confounding bias is crucial in causal inference. Distinct methods are currently employed to mitigate the effects of confounding bias. Each requires the introduction of a set of covariates, which remains difficult to choose, especially regarding the different methods. We conduct a sim...
Autores principales: | Chatton, Arthur, Le Borgne, Florent, Leyrat, Clémence, Gillaizeau, Florence, Rousseau, Chloé, Barbin, Laetitia, Laplaud, David, Léger, Maxime, Giraudeau, Bruno, Foucher, Yohann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280276/ https://www.ncbi.nlm.nih.gov/pubmed/32514028 http://dx.doi.org/10.1038/s41598-020-65917-x |
Ejemplares similares
-
G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
por: Le Borgne, Florent, et al.
Publicado: (2021) -
Propensity score to detect baseline imbalance in cluster randomized trials: the role of the c-statistic
por: Leyrat, Clémence, et al.
Publicado: (2016) -
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
por: Meyer, Karin
Publicado: (2011) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998) -
Covariance of maximum likelihood evolutionary distances between sequences aligned pairwise
por: Dessimoz, Christophe, et al.
Publicado: (2008)