Cargando…
Convolutional neural networks for brain tumour segmentation
The introduction of quantitative image analysis has given rise to fields such as radiomics which have been used to predict clinical sequelae. One growing area of interest for analysis is brain tumours, in particular glioblastoma multiforme (GBM). Tumour segmentation is an important step in the pipel...
Autores principales: | Bhandari, Abhishta, Koppen, Jarrad, Agzarian, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280397/ https://www.ncbi.nlm.nih.gov/pubmed/32514649 http://dx.doi.org/10.1186/s13244-020-00869-4 |
Ejemplares similares
-
Brain Tumour Segmentation Using Convolutional Neural Network with Tensor Flow
por: Malathi, M, et al.
Publicado: (2019) -
A primer on deep learning and convolutional neural networks for clinicians
por: Iglesias, Lara Lloret, et al.
Publicado: (2021) -
Region Convolutional Neural Network for Brain Tumor Segmentation
por: Pitchai, R., et al.
Publicado: (2022) -
Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
por: Ding, Yang, et al.
Publicado: (2020) -
Computer image analysis with artificial intelligence: a practical introduction to convolutional neural networks for medical professionals
por: Kourounis, Georgios, et al.
Publicado: (2023)