Cargando…

Impacts drive lunar rockfalls over billions of years

Past exploration missions have revealed that the lunar topography is eroded through mass wasting processes such as rockfalls and other types of landslides, similar to Earth. We have analyzed an archive of more than 2 million high-resolution images using an AI and big data-driven approach and created...

Descripción completa

Detalles Bibliográficos
Autores principales: Bickel, Valentin Tertius, Aaron, Jordan, Manconi, Andrea, Loew, Simon, Mall, Urs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280507/
https://www.ncbi.nlm.nih.gov/pubmed/32513934
http://dx.doi.org/10.1038/s41467-020-16653-3
Descripción
Sumario:Past exploration missions have revealed that the lunar topography is eroded through mass wasting processes such as rockfalls and other types of landslides, similar to Earth. We have analyzed an archive of more than 2 million high-resolution images using an AI and big data-driven approach and created the first global map of 136.610 lunar rockfall events. Using this map, we show that mass wasting is primarily driven by impacts and impact-induced fracture networks. We further identify a large number of currently unknown rockfall clusters, potentially revealing regions of recent seismic activity. Our observations show that the oldest, pre-Nectarian topography still hosts rockfalls, indicating that its erosion has been active throughout the late Copernican age and likely continues today. Our findings have important implications for the estimation of the Moon’s erosional state and other airless bodies as well as for the understanding of the topographic evolution of planetary surfaces in general.