Cargando…

Innovative Alternatives for Continuous In Vitro Culture of Babesia bigemina in Medium Free of Components of Animal Origin

In this study, we report Babesia bigemina proliferation in culture medium free of components of animal origin supplemented with a lipid mixture. Babesia bigemina continuously proliferated in VP-SFM with a higher percent parasitized erythrocyte as compare to using other animal component-free culture...

Descripción completa

Detalles Bibliográficos
Autores principales: Álvarez Martínez, Jesús A., Figueroa Millán, Julio V., Ueti, Massaro W., Rojas-Martínez, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281159/
https://www.ncbi.nlm.nih.gov/pubmed/32370024
http://dx.doi.org/10.3390/pathogens9050343
Descripción
Sumario:In this study, we report Babesia bigemina proliferation in culture medium free of components of animal origin supplemented with a lipid mixture. Babesia bigemina continuously proliferated in VP-SFM with a higher percent parasitized erythrocyte as compare to using other animal component-free culture media. Compared with Advanced DMEM/F12 (ADMEM/F12), VP-SFM had a similar percent parasitized erythrocyte (PPE). Supplementation of VP-SF with a lipid acid mixture improved B. bigemina proliferation in vitro culture, with a maximum PPE of 11.3%. Growth of B. bigemina in a perfusion bioreactor using VP-SFM medium supplemented with lipid mixture resulted in a PPE above 28%. In conclusion, we demonstrated that B. bigemina proliferated in an animal component-free medium supplemented with the fatty acid mixture. This innovation to B. bigemina in vitro culture method presented herein is an important source of biological material for live vaccine production and understanding the mechanisms and molecules involved in parasite attachment and invasion of bovine erythrocytes.