Cargando…

ZNF281-miR-543 Feedback Loop Regulates Transforming Growth Factor-β-Induced Breast Cancer Metastasis

Breast cancer is the most common malignancy, and metastasis is the main cause of cancer-associated mortality in women worldwide. Transforming growth factor-β (TGF-β) signaling, an inducer of epithelial-to-mesenchymal transition (EMT), plays an important role in breast cancer metastasis. Abnormal exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Wei, Mu, Qiang, Liu, Xiang-Yu, Cao, Xu-Chen, Yu, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281305/
https://www.ncbi.nlm.nih.gov/pubmed/32512343
http://dx.doi.org/10.1016/j.omtn.2020.05.020
Descripción
Sumario:Breast cancer is the most common malignancy, and metastasis is the main cause of cancer-associated mortality in women worldwide. Transforming growth factor-β (TGF-β) signaling, an inducer of epithelial-to-mesenchymal transition (EMT), plays an important role in breast cancer metastasis. Abnormal expression of miR-543 is associated with tumorigenesis and progression of various human cancers; however, the knowledge about the role of miR-543 in breast cancer metastasis is still unknown. In this study, we demonstrated that miR-543 inhibits the EMT-like phenotype and TGF-β-induced breast cancer metastasis both in vitro and in vivo by targeting ZNF281. ZNF281 transactivates the EMT-related transcription factor ZEB1 and Snail. Furthermore, both ZEB1 and Snail can transcriptionally suppress miR-543 expression. Taken together, our data uncover the ZNF281-miR-543 feedback loop and provide a mechanism to extend the understanding of TGF-β network complexity.