Cargando…

Solving the Time- and Frequency-Multiplexed Problem of Constrained Radiofrequency Induced Hyperthermia

Targeted radiofrequency (RF) heating induced hyperthermia has a wide range of applications, ranging from adjunct anti-cancer treatment to localized release of drugs. Focal RF heating is usually approached using time-consuming nonconvex optimization procedures or approximations, which significantly h...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuehne, Andre, Oberacker, Eva, Waiczies, Helmar, Niendorf, Thoralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281622/
https://www.ncbi.nlm.nih.gov/pubmed/32344914
http://dx.doi.org/10.3390/cancers12051072
Descripción
Sumario:Targeted radiofrequency (RF) heating induced hyperthermia has a wide range of applications, ranging from adjunct anti-cancer treatment to localized release of drugs. Focal RF heating is usually approached using time-consuming nonconvex optimization procedures or approximations, which significantly hampers its application. To address this limitation, this work presents an algorithm that recasts the problem as a semidefinite program and quickly solves it to global optimality, even for very large (human voxel) models. The target region and a desired RF power deposition pattern as well as constraints can be freely defined on a voxel level, and the optimum application RF frequencies and time-multiplexed RF excitations are automatically determined. 2D and 3D example applications conducted for test objects containing pure water (r(target) = 19 mm, frequency range: 500–2000 MHz) and for human brain models including brain tumors of various size (r(1) = 20 mm, r(2) = 30 mm, frequency range 100–1000 MHz) and locations (center, off-center, disjoint) demonstrate the applicability and capabilities of the proposed approach. Due to its high performance, the algorithm can solve typical clinical problems in a few seconds, making the presented approach ideally suited for interactive hyperthermia treatment planning, thermal dose and safety management, and the design, rapid evaluation, and comparison of RF applicator configurations.