Cargando…

A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections

We introduce a machine learning-based analysis to predict the immunohistochemical (IHC) labeling index for the cell proliferation marker Ki67/MIB1 on cancer tissues based on morphometrical features extracted from hematoxylin and eosin (H&E)-stained formalin-fixed, paraffin-embedded (FFPE) tumor...

Descripción completa

Detalles Bibliográficos
Autores principales: Martino, Francesco, Varricchio, Silvia, Russo, Daniela, Merolla, Francesco, Ilardi, Gennaro, Mascolo, Massimo, dell’Aversana, Giovanni Orabona, Califano, Luigi, Toscano, Guglielmo, De Pietro, Giuseppe, Frucci, Maria, Brancati, Nadia, Fraggetta, Filippo, Staibano, Stefania
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281627/
https://www.ncbi.nlm.nih.gov/pubmed/32466184
http://dx.doi.org/10.3390/cancers12051344
_version_ 1783543964489482240
author Martino, Francesco
Varricchio, Silvia
Russo, Daniela
Merolla, Francesco
Ilardi, Gennaro
Mascolo, Massimo
dell’Aversana, Giovanni Orabona
Califano, Luigi
Toscano, Guglielmo
De Pietro, Giuseppe
Frucci, Maria
Brancati, Nadia
Fraggetta, Filippo
Staibano, Stefania
author_facet Martino, Francesco
Varricchio, Silvia
Russo, Daniela
Merolla, Francesco
Ilardi, Gennaro
Mascolo, Massimo
dell’Aversana, Giovanni Orabona
Califano, Luigi
Toscano, Guglielmo
De Pietro, Giuseppe
Frucci, Maria
Brancati, Nadia
Fraggetta, Filippo
Staibano, Stefania
author_sort Martino, Francesco
collection PubMed
description We introduce a machine learning-based analysis to predict the immunohistochemical (IHC) labeling index for the cell proliferation marker Ki67/MIB1 on cancer tissues based on morphometrical features extracted from hematoxylin and eosin (H&E)-stained formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples. We provided a proof-of-concept prediction of the Ki67/MIB1 IHC positivity of cancer cells through the definition and quantitation of single nuclear features. In the first instance, we set our digital framework on Ki67/MIB1-stained OSCC (oral squamous cell carcinoma) tissue sample whole slide images, using QuPath as a working platform and its integrated algorithms, and we built a classifier in order to distinguish tumor and stroma classes and, within them, Ki67-positive and Ki67-negative cells; then, we sorted the morphometric features of tumor cells related to their Ki67 IHC status. Among the evaluated features, nuclear hematoxylin mean optical density (NHMOD) presented as the best one to distinguish Ki67/MIB1 positive from negative cells. We confirmed our findings in a single-cell level analysis of H&E staining on Ki67-immunostained/H&E-decolored tissue samples. Finally, we tested our digital framework on a case series of oral squamous cell carcinomas (OSCC), arranged in tissue microarrays; we selected two consecutive sections of each OSCC FFPE TMA (tissue microarray) block, respectively stained with H&E and immuno-stained for Ki67/MIB1. We automatically detected tumor cells in H&E slides and generated a “false color map” (FCM) based on NHMOD through the QuPath measurements map tool. FCM nearly coincided with the actual immunohistochemical result, allowing the prediction of Ki67/MIB1 positive cells in a direct visual fashion. Our proposed approach provides the pathologist with a fast method of identifying the proliferating compartment of the tumor through a quantitative assessment of the nuclear features on H&E slides, readily appreciable by visual inspection. Although this technique needs to be fine-tuned and tested on larger series of tumors, the digital analysis approach appears to be a promising tool to quickly forecast the tumor’s proliferation fraction directly on routinely H&E-stained digital sections.
format Online
Article
Text
id pubmed-7281627
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72816272020-06-17 A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections Martino, Francesco Varricchio, Silvia Russo, Daniela Merolla, Francesco Ilardi, Gennaro Mascolo, Massimo dell’Aversana, Giovanni Orabona Califano, Luigi Toscano, Guglielmo De Pietro, Giuseppe Frucci, Maria Brancati, Nadia Fraggetta, Filippo Staibano, Stefania Cancers (Basel) Article We introduce a machine learning-based analysis to predict the immunohistochemical (IHC) labeling index for the cell proliferation marker Ki67/MIB1 on cancer tissues based on morphometrical features extracted from hematoxylin and eosin (H&E)-stained formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples. We provided a proof-of-concept prediction of the Ki67/MIB1 IHC positivity of cancer cells through the definition and quantitation of single nuclear features. In the first instance, we set our digital framework on Ki67/MIB1-stained OSCC (oral squamous cell carcinoma) tissue sample whole slide images, using QuPath as a working platform and its integrated algorithms, and we built a classifier in order to distinguish tumor and stroma classes and, within them, Ki67-positive and Ki67-negative cells; then, we sorted the morphometric features of tumor cells related to their Ki67 IHC status. Among the evaluated features, nuclear hematoxylin mean optical density (NHMOD) presented as the best one to distinguish Ki67/MIB1 positive from negative cells. We confirmed our findings in a single-cell level analysis of H&E staining on Ki67-immunostained/H&E-decolored tissue samples. Finally, we tested our digital framework on a case series of oral squamous cell carcinomas (OSCC), arranged in tissue microarrays; we selected two consecutive sections of each OSCC FFPE TMA (tissue microarray) block, respectively stained with H&E and immuno-stained for Ki67/MIB1. We automatically detected tumor cells in H&E slides and generated a “false color map” (FCM) based on NHMOD through the QuPath measurements map tool. FCM nearly coincided with the actual immunohistochemical result, allowing the prediction of Ki67/MIB1 positive cells in a direct visual fashion. Our proposed approach provides the pathologist with a fast method of identifying the proliferating compartment of the tumor through a quantitative assessment of the nuclear features on H&E slides, readily appreciable by visual inspection. Although this technique needs to be fine-tuned and tested on larger series of tumors, the digital analysis approach appears to be a promising tool to quickly forecast the tumor’s proliferation fraction directly on routinely H&E-stained digital sections. MDPI 2020-05-25 /pmc/articles/PMC7281627/ /pubmed/32466184 http://dx.doi.org/10.3390/cancers12051344 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Martino, Francesco
Varricchio, Silvia
Russo, Daniela
Merolla, Francesco
Ilardi, Gennaro
Mascolo, Massimo
dell’Aversana, Giovanni Orabona
Califano, Luigi
Toscano, Guglielmo
De Pietro, Giuseppe
Frucci, Maria
Brancati, Nadia
Fraggetta, Filippo
Staibano, Stefania
A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections
title A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections
title_full A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections
title_fullStr A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections
title_full_unstemmed A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections
title_short A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections
title_sort machine-learning approach for the assessment of the proliferative compartment of solid tumors on hematoxylin-eosin-stained sections
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281627/
https://www.ncbi.nlm.nih.gov/pubmed/32466184
http://dx.doi.org/10.3390/cancers12051344
work_keys_str_mv AT martinofrancesco amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT varricchiosilvia amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT russodaniela amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT merollafrancesco amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT ilardigennaro amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT mascolomassimo amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT dellaversanagiovanniorabona amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT califanoluigi amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT toscanoguglielmo amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT depietrogiuseppe amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT fruccimaria amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT brancatinadia amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT fraggettafilippo amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT staibanostefania amachinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT martinofrancesco machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT varricchiosilvia machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT russodaniela machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT merollafrancesco machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT ilardigennaro machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT mascolomassimo machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT dellaversanagiovanniorabona machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT califanoluigi machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT toscanoguglielmo machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT depietrogiuseppe machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT fruccimaria machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT brancatinadia machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT fraggettafilippo machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections
AT staibanostefania machinelearningapproachfortheassessmentoftheproliferativecompartmentofsolidtumorsonhematoxylineosinstainedsections