Cargando…

Synthesis of Fluorescent Jasplakinolide Analogues for Live-Cell STED Microscopy of Actin

[Image: see text] The nanometer thickness of filaments and the dynamic behavior of actin—a protein playing a crucial role in cellular function and motility—make it attractive for observation with super-resolution optical microscopy. We developed the solution-phase synthesis of des-bromo-des-methyl-j...

Descripción completa

Detalles Bibliográficos
Autores principales: Belov, Vladimir N., Stoldt, Stefan, Rüttger, Franziska, John, Michael, Seikowski, Jan, Schimpfhauser, Jens, Hell, Stefan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281785/
https://www.ncbi.nlm.nih.gov/pubmed/32418421
http://dx.doi.org/10.1021/acs.joc.0c00653
Descripción
Sumario:[Image: see text] The nanometer thickness of filaments and the dynamic behavior of actin—a protein playing a crucial role in cellular function and motility—make it attractive for observation with super-resolution optical microscopy. We developed the solution-phase synthesis of des-bromo-des-methyl-jasplakinolide-lysine, used as the “recognition unit” (ligand) for F-actin in living cells. The first amino acid—Fmoc-O-TIPS-β-tyrosine—was prepared in 78% yield (two steps in one pot). The new solution-phase synthesis involves 2-phenylisopropyl protection of the carboxyl group and does not require excesses of commercially unavailable amino acids. The overall yield of the target intermediate obtained in nine steps is about 8%. The 2-phenylisopropyl group can be cleaved from carboxyl with 2–3% (v/v) of TFA in acetonitrile (0–10 °C), without affecting TIPS protection of the phenolic hydroxyl in β-tyrosine and N-Boc protection in lysine. Des-bromo-des-methyl-jasplakinolide-lysine was coupled with red-emitting fluorescent dyes 580CP and 610CP (via 6-aminohexanoate linker). Actin in living cells was labeled with 580CP and 610CP probes, and the optical resolution measured as full width at half-maximum of line profiles across actin fibers was found to be 300–400 nm and 100 nm under confocal and STED conditions, respectively. The solution-phase synthesis of des-bromo-des-methyl-jasplakinolide-lysine opens a way to better fluorescent probe perspective for actin imaging.