Cargando…
Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network
In this paper, we demonstrate the feasibility and performance of deep residual neural networks for volumetric segmentation of irreversibly damaged brain tissue lesions on T1-weighted MRI scans for chronic stroke patients. A total of 239 T1-weighted MRI scans of chronic ischemic stroke patients from...
Autores principales: | Tomita, Naofumi, Jiang, Steven, Maeder, Matthew E., Hassanpour, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281812/ https://www.ncbi.nlm.nih.gov/pubmed/32512401 http://dx.doi.org/10.1016/j.nicl.2020.102276 |
Ejemplares similares
-
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017) -
Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
por: McKinley, Richard, et al.
Publicado: (2019) -
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
por: Guerrero, R., et al.
Publicado: (2017) -
Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
por: Khalili, Nadieh, et al.
Publicado: (2019) -
Automatic Segmentation and Quantitative Assessment of Stroke Lesions on MR Images
por: Verma, Khushboo, et al.
Publicado: (2022)