Cargando…
Knockdown of Ubiquitin-Specific Protease 53 Enhances the Radiosensitivity of Human Cervical Squamous Cell Carcinoma by Regulating DNA Damage-Binding Protein 2
BACKGROUND: Cervical cancer ranks fourth in incidence and mortality among women. Ubiquitin-specific protein 53 binds to damage-specific DNA binding protein 2 and affects the biological properties of colon cancer. Damage-specific DNA binding protein is involved in nucleotide excision repair, which ca...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281878/ https://www.ncbi.nlm.nih.gov/pubmed/32508265 http://dx.doi.org/10.1177/1533033820929792 |
Sumario: | BACKGROUND: Cervical cancer ranks fourth in incidence and mortality among women. Ubiquitin-specific protein 53 binds to damage-specific DNA binding protein 2 and affects the biological properties of colon cancer. Damage-specific DNA binding protein is involved in nucleotide excision repair, which can repair DNA damage. However, the mechanism by which ubiquitin-specific protein 53 regulates the radiosensitivity of cervical cancer through damage-specific DNA binding protein remains unclear. METHODS: Tissue samples from 40 patients with cervical squamous cell carcinoma who received radiotherapy were examined by immunohistochemistry to detect the expression of ubiquitin-specific protein 53, and clinical data were collected for statistical analysis. The cell cycle was detected by flow cytometry in Siha cells transfected with Si-USP53 and exposed to 8 Gy irradiation. Cell viability was determined by the CCK8 method in cells transfected with Si-USP53 and exposed to 0, 2, 4, 6, 8, or 10 Gy. The expression of damage-specific DNA binding protein, cyclin-dependent kinase 1, and cell cycle checkpoint kinase 2 was detected in cells transfected with Si-USP53. RESULTS: The expression of ubiquitin-specific protein 53 in the tissues of patients with cervical squamous cell carcinoma was correlated with the sensitivity to radiotherapy. Knockdown of ubiquitin-specific protein 53 in Siha cells downregulated damage-specific DNA binding protein and caused G2/M cell cycle arrest and decreased the survival rate of cells in response to radiation. CONCLUSION: Ubiquitin-specific protein 53–induced cell cycle arrest and affected the radiotherapy sensitivity of tumors through damage-specific DNA binding protein. |
---|