Cargando…
The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review
BACKGROUND: Electrical impedance technology has been well established for the last 20 years. Recently research has begun to emerge into its potential uses in the detection and diagnosis of pre-malignant and malignant conditions. The aim of this study was to systematically review the clinical applica...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282098/ https://www.ncbi.nlm.nih.gov/pubmed/32513179 http://dx.doi.org/10.1186/s12967-020-02395-9 |
Sumario: | BACKGROUND: Electrical impedance technology has been well established for the last 20 years. Recently research has begun to emerge into its potential uses in the detection and diagnosis of pre-malignant and malignant conditions. The aim of this study was to systematically review the clinical application of electrical impedance technology in the detection of malignant neoplasms. METHODS: A search of Embase Classic, Embase and Medline databases was conducted from 1980 to 22/02/2018 to identify studies reporting on the use of bioimpedance technology in the detection of pre-malignant and malignant conditions. The ability to distinguish between tissue types was defined as the primary endpoint, and other points of interest were also reported. RESULTS: 731 articles were identified, of which 51 reported sufficient data for analysis. These studies covered 16 different cancer subtypes in a total of 7035 patients. As the studies took various formats, a qualitative analysis of each cancer subtype’s data was undertaken. All the studies were able to show differences in electrical impedance and/or related metrics between malignant and normal tissue. CONCLUSIONS: Electrical impedance technology provides a novel method for the detection of malignant tissue, with large studies of cervical, prostate, skin and breast cancers showing encouraging results. Whilst these studies provide promising insights into the potential of this technology as an adjunct in screening, diagnosis and intra-operative margin assessment, customised development as well as multi-centre clinical trials need to be conducted before it can be reliably employed in the clinical detection of malignant tissue. |
---|