Cargando…
The effects of exposure to fluoxetine during lactation on testicular tissue and sperm parameters in mice offspring
Fluoxetine is a selective serotonin reuptake inhibitor is commonly prescribed to treat maternal depression in pregnancy and lactation. This study aimed to investigate the effects of maternal exposure to fluoxetine via lactation on testicular tissue, sperm parameters including count, motility, viabil...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Urmia University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282220/ https://www.ncbi.nlm.nih.gov/pubmed/32537105 http://dx.doi.org/10.30466/vrf.2018.82090.2082 |
Sumario: | Fluoxetine is a selective serotonin reuptake inhibitor is commonly prescribed to treat maternal depression in pregnancy and lactation. This study aimed to investigate the effects of maternal exposure to fluoxetine via lactation on testicular tissue, sperm parameters including count, motility, viability, and normal morphology and testicular oxidative stress status in male mice offspring. Ten mice dams were divided into control and experimental groups. The control group received water and the experimental group received fluoxetine (20.00 mg kg(-1)) by gavage daily from postnatal days of 0-21. Histology of testis, sperm parameters and oxidative stress in the testicular tissue were analyzed at 80 days after birth in their male offspring (n = 8). Significant reductions in the body and testes weights were observed in animals exposed to fluoxetine. Additionally, fluoxetine exposure significantly reduced all sperm parameters, tubular diameter and epithelial height of the seminiferous tubules as well as Leydig cells number. Significant increases in the testicular malondialdehyde levels and percentage of sperm with chromatin/DNA damage were observed in mice exposed to fluoxetine compared to control. These findings suggest that maternal exposure to fluoxetine during lactation in mice has a negative effect on the testicular tissue of their offspring and impairs the spermatogenesis process which in turn can induce infertility. |
---|