Cargando…
Reducing the number of unnecessary biopsies of US-BI-RADS 4a lesions through a deep learning method for residents-in-training: a cross-sectional study
OBJECTIVE: The aim of the study is to explore the potential value of S-Detect for residents-in-training, a computer-assisted diagnosis system based on deep learning (DL) algorithm. METHODS: The study was designed as a cross-sectional study. Routine breast ultrasound examinations were conducted by an...
Autores principales: | Zhao, Chenyang, Xiao, Mengsu, Liu, He, Wang, Ming, Wang, Hongyan, Zhang, Jing, Jiang, Yuxin, Zhu, Qingli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282415/ https://www.ncbi.nlm.nih.gov/pubmed/32513885 http://dx.doi.org/10.1136/bmjopen-2019-035757 |
Ejemplares similares
-
Reducing the number of unnecessary biopsies for mammographic BI-RADS 4 lesions through a deep transfer learning method
por: Meng, Mingzhu, et al.
Publicado: (2023) -
Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions
por: Wang, Shi-Jie, et al.
Publicado: (2022) -
Exploring the Relationship Between CD 166 Expression and Breast Imaging Reporting and Data System (BI-RADS) Scores in Breast Cancer Patients and Healthy Volunteers
por: Hemalatha, Vemareddy, et al.
Publicado: (2023) -
AI-RADS: An Artificial Intelligence Curriculum for Residents
por: Lindqwister, Alexander L., et al.
Publicado: (2020) -
Superb Microvascular Imaging Technology Can Improve the Diagnostic Efficiency of the BI-RADS System
por: Cai, Siman, et al.
Publicado: (2021)