Cargando…
Hierarchical attention networks for information extraction from cancer pathology reports
OBJECTIVE: We explored how a deep learning (DL) approach based on hierarchical attention networks (HANs) can improve model performance for multiple information extraction tasks from unstructured cancer pathology reports compared to conventional methods that do not sufficiently capture syntactic and s...
Autores principales: | Gao, Shang, Young, Michael T, Qiu, John X, Yoon, Hong-Jun, Christian, James B, Fearn, Paul A, Tourassi, Georgia D, Ramanthan, Arvind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282502/ https://www.ncbi.nlm.nih.gov/pubmed/29155996 http://dx.doi.org/10.1093/jamia/ocx131 |
Ejemplares similares
-
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
Automatic information extraction from childhood cancer pathology reports
por: Yoon, Hong-Jun, et al.
Publicado: (2022) -
A deep neural network for the classification of epileptic seizures using hierarchical attention mechanism
por: Chirasani, Sateesh Kumar Reddy, et al.
Publicado: (2022) -
Scalable deep text comprehension for Cancer surveillance on high-performance computing
por: Qiu, John X., et al.
Publicado: (2018)