Cargando…

Human herpesvirus 6A promotes glycolysis in infected T cells by activation of mTOR signaling

Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus worldwide. However, whether and how HHV-6 infection influences the metabolic machinery of the host cell to provide the energy and biosynthetic resources for virus propagation remains unknown. In this study, we i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zhisheng, Jia, Junli, Xu, Xianyi, Xu, Mengyuan, Peng, Guangyong, Ma, Jingjing, Jiang, Xuefeng, Yao, Jialin, Yao, Kun, Li, Lingyun, Tang, Huamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282626/
https://www.ncbi.nlm.nih.gov/pubmed/32516328
http://dx.doi.org/10.1371/journal.ppat.1008568
Descripción
Sumario:Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus worldwide. However, whether and how HHV-6 infection influences the metabolic machinery of the host cell to provide the energy and biosynthetic resources for virus propagation remains unknown. In this study, we identified that HHV-6A infection promotes glucose metabolism in infected T cells, resulting in elevated glycolytic activity with an increase of glucose uptake, glucose consumption and lactate secretion. Furthermore, we explored the mechanisms involved in HHV-6A-mediated glycolytic activation in the infected T cells. We found increased expressions of the key glucose transporters and glycolytic enzymes in HHV-6A-infected T cells. In addition, HHV-6A infection dramatically activated AKT-mTORC1 signaling in the infected T cells and pharmacological inhibition of mTORC1 blocked HHV-6A-mediated glycolytic activation. We also found that direct inhibition of glycolysis by 2-Deoxy-D-glucose (2-DG) or inhibition of mTORC1 activity in HHV-6A-infected T cells effectively reduced HHV-6 DNA replication, protein synthesis and virion production. These results not only reveal the mechanism of how HHV-6 infection affects host cell metabolism, but also suggest that targeting the metabolic pathway could be a new avenue for HHV-6 therapy.