Cargando…
Large-scale estimation of random graph models with local dependence
A class of random graph models is considered, combining features of exponential-family models and latent structure models, with the goal of retaining the strengths of both of them while reducing the weaknesses of each of them. An open problem is how to estimate such models from large networks. A nov...
Autores principales: | Babkin, Sergii, Stewart, Jonathan R., Long, Xiaochen, Schweinberger, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282802/ https://www.ncbi.nlm.nih.gov/pubmed/32834264 http://dx.doi.org/10.1016/j.csda.2020.107029 |
Ejemplares similares
-
Exponential random graph model parameter estimation for very large directed networks
por: Stivala, Alex, et al.
Publicado: (2020) -
Estimating Descriptors for Large Graphs
por: Hassan, Zohair Raza, et al.
Publicado: (2020) -
Correction: Exponential random graph model parameter estimation for very large directed networks
Publicado: (2020) -
Explainable AI for Estimating Pathogenicity of Genetic Variants Using Large-Scale Knowledge Graphs
por: Abe, Shuya, et al.
Publicado: (2023) -
Distributed large-scale graph processing on FPGAs
por: Sahebi, Amin, et al.
Publicado: (2023)