Cargando…

GoPi: Compiling Linear and Static Channels in Go

We identify two important features to enhance the design of communication protocols specified in the pi-calculus, that are linear and static channels, and present a compiler, named GoPi, that maps high level specifications into executable Go programs. Channels declared as linear are deadlock-free, w...

Descripción completa

Detalles Bibliográficos
Autor principal: Giunti, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282843/
http://dx.doi.org/10.1007/978-3-030-50029-0_9
Descripción
Sumario:We identify two important features to enhance the design of communication protocols specified in the pi-calculus, that are linear and static channels, and present a compiler, named GoPi, that maps high level specifications into executable Go programs. Channels declared as linear are deadlock-free, while the scope of static channels, which are bound by a hide declaration, does not enlarge at runtime; this is enforced statically by means of type inference, while specifications do not include annotations. Well-behaved processes are transformed into Go code that supports non-deterministic synchronizations and race-freedom. We sketch two main examples involving protection against message forwarding, and forward secrecy, and discuss the features of the tool, and the generated code. We argue that GoPi can support academic activities involving process algebras and formal models, which range from the analysis and testing of concurrent processes for research purposes to teaching formal languages and concurrent systems.