Cargando…
Quantifying the drivers and predictability of seasonal changes in African fire
Africa contains some of the most vulnerable ecosystems to fires. Successful seasonal prediction of fire activity over these fire-prone regions remains a challenge and relies heavily on in-depth understanding of various driving mechanisms underlying fire evolution. Here, we assess the seasonal enviro...
Autores principales: | Yu, Yan, Mao, Jiafu, Thornton, Peter E., Notaro, Michael, Wullschleger, Stan D., Shi, Xiaoying, Hoffman, Forrest M., Wang, Yaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283213/ https://www.ncbi.nlm.nih.gov/pubmed/32518232 http://dx.doi.org/10.1038/s41467-020-16692-w |
Ejemplares similares
-
Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire
por: Yu, Yan, et al.
Publicado: (2022) -
Quantification of human contribution to soil moisture-based terrestrial aridity
por: Wang, Yaoping, et al.
Publicado: (2022) -
Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria
por: Akhmetzhanov, Andrei R., et al.
Publicado: (2019) -
Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism
por: Yu, Yan, et al.
Publicado: (2017) -
Quantifying Responses of Dung Beetles to Fire Disturbance in Tropical Forests: The Importance of Trapping Method and Seasonality
por: de Andrade, Rafael Barreto, et al.
Publicado: (2011)