Cargando…
A personalised approach for identifying disease-relevant pathways in heterogeneous diseases
Numerous time-course gene expression datasets have been generated for studying the biological dynamics that drive disease progression; and nearly as many methods have been proposed to analyse them. However, barely any method exists that can appropriately model time-course data while accounting for h...
Autores principales: | Somani, Juhi, Ramchandran, Siddharth, Lähdesmäki, Harri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283216/ https://www.ncbi.nlm.nih.gov/pubmed/32518234 http://dx.doi.org/10.1038/s41540-020-0130-3 |
Ejemplares similares
-
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
por: Cheng, Lu, et al.
Publicado: (2019) -
Personalised profiling to identify clinically relevant changes in tremor due to multiple sclerosis
por: Western, David G., et al.
Publicado: (2019) -
ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data
por: Osmala, Maria, et al.
Publicado: (2022) -
Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis
por: Plichta, Damian R., et al.
Publicado: (2021) -
Response heterogeneity: Challenges for personalised medicine and big data approaches in psychiatry and chronic pain
por: Norbury, Agnes, et al.
Publicado: (2018)