Cargando…

BacEffluxPred: A two-tier system to predict and categorize bacterial efflux mediated antibiotic resistance proteins

Efflux proteins are transport proteins, which are involved in transporting different substrates from the cell to the external environment, including antibiotics. The efflux mechanism and efflux pumps are a major reason underlying emerging rampant antibiotic resistance (AR) in microbes. To reduce the...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandey, Deeksha, Kumari, Bandana, Singhal, Neelja, Kumar, Manish
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283322/
https://www.ncbi.nlm.nih.gov/pubmed/32518231
http://dx.doi.org/10.1038/s41598-020-65981-3
Descripción
Sumario:Efflux proteins are transport proteins, which are involved in transporting different substrates from the cell to the external environment, including antibiotics. The efflux mechanism and efflux pumps are a major reason underlying emerging rampant antibiotic resistance (AR) in microbes. To reduce the resources required and time of identification, characterization and classification of bacterial efflux proteins, we have developed a fast and accurate support vector machine based two-tier prediction system, BacEffluxPred, which can predict bacterial efflux proteins responsible for AR and identify their corresponding families. A leave-one-out cross-validation also called jackknife procedure was used for performance evaluation. The accuracy to discriminate bacterial AR efflux from non-AR efflux was obtained as 85.81% (at tier-I) while accuracies for prediction of efflux pump families like ABC, MFS, RND and MATE family were found 92.13%, 85.39%, 91.01% and 99.44%, respectively (at tier-II). Benchmarking on an independent dataset also showed that BacEffluxPred had comparable accuracy for prediction of bacterial AR efflux pumps and their families. This is the first in-silico tool for predicting bacterial AR efflux proteins and their families and is freely available as both web-server and standalone versions at http://proteininformatics.org/mkumar/baceffluxpred/.