Cargando…
Impact of Diverse Data Sources on Computational Phenotyping
Electronic health records (EHRs) are widely adopted with a great potential to serve as a rich, integrated source of phenotype information. Computational phenotyping, which extracts phenotypes from EHR data automatically, can accelerate the adoption and utilization of phenotype-driven efforts to adva...
Autores principales: | Wang, Liwei, Olson, Janet E., Bielinski, Suzette J., St. Sauver, Jennifer L., Fu, Sunyang, He, Huan, Cicek, Mine S., Hathcock, Matthew A., Cerhan, James R., Liu, Hongfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283539/ https://www.ncbi.nlm.nih.gov/pubmed/32582289 http://dx.doi.org/10.3389/fgene.2020.00556 |
Ejemplares similares
-
Characteristics and utilisation of the Mayo Clinic Biobank, a clinic-based prospective collection in the USA: cohort profile
por: Olson, Janet E, et al.
Publicado: (2019) -
Assessing document section heterogeneity across multiple electronic health record systems for computational phenotyping: A case study of heart-failure phenotyping algorithm
por: Moon, Sungrim, et al.
Publicado: (2023) -
No Association Between Pharmacogenomics Variants and Hospital and Emergency Department Utilization: A Mayo Clinic Biobank Retrospective Study
por: Takahashi, Paul Y, et al.
Publicado: (2021) -
Identification of delirium from real-world electronic health record clinical notes
por: St. Sauver, Jennifer, et al.
Publicado: (2023) -
Quantifying the importance of disease burden on perceived general health and depressive symptoms in patients within the Mayo Clinic Biobank
por: Ryu, Euijung, et al.
Publicado: (2015)