Cargando…
Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells
At least 200 single-nucleotide polymorphisms (SNPs) are associated with multiple sclerosis (MS) risk. A key function that could mediate SNP-encoded MS risk is their regulatory effects on gene expression. We performed microarrays using RNA extracted from purified immune cell types from 73 untreated M...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283543/ https://www.ncbi.nlm.nih.gov/pubmed/32518073 http://dx.doi.org/10.26508/lsa.202000650 |
_version_ | 1783544323456892928 |
---|---|
author | Gresle, Melissa M Jordan, Margaret A Stankovich, Jim Spelman, Tim Johnson, Laura J Laverick, Louise Hamlett, Alison Smith, Letitia D Jokubaitis, Vilija G Baker, Josephine Haartsen, Jodi Taylor, Bruce Charlesworth, Jac Bahlo, Melanie Speed, Terence P Brown, Matthew A Field, Judith Baxter, Alan G Butzkueven, Helmut |
author_facet | Gresle, Melissa M Jordan, Margaret A Stankovich, Jim Spelman, Tim Johnson, Laura J Laverick, Louise Hamlett, Alison Smith, Letitia D Jokubaitis, Vilija G Baker, Josephine Haartsen, Jodi Taylor, Bruce Charlesworth, Jac Bahlo, Melanie Speed, Terence P Brown, Matthew A Field, Judith Baxter, Alan G Butzkueven, Helmut |
author_sort | Gresle, Melissa M |
collection | PubMed |
description | At least 200 single-nucleotide polymorphisms (SNPs) are associated with multiple sclerosis (MS) risk. A key function that could mediate SNP-encoded MS risk is their regulatory effects on gene expression. We performed microarrays using RNA extracted from purified immune cell types from 73 untreated MS cases and 97 healthy controls and then performed Cis expression quantitative trait loci mapping studies using additive linear models. We describe MS risk expression quantitative trait loci associations for 129 distinct genes. By extending these models to include an interaction term between genotype and phenotype, we identify MS risk SNPs with opposing effects on gene expression in cases compared with controls, namely, rs2256814 MYT1 in CD4 cells (q = 0.05) and rs12087340 RF00136 in monocyte cells (q = 0.04). The rs703842 SNP was also associated with a differential effect size on the expression of the METTL21B gene in CD8 cells of MS cases relative to controls (q = 0.03). Our study provides a detailed map of MS risk loci that function by regulating gene expression in cell types relevant to MS. |
format | Online Article Text |
id | pubmed-7283543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-72835432020-06-15 Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells Gresle, Melissa M Jordan, Margaret A Stankovich, Jim Spelman, Tim Johnson, Laura J Laverick, Louise Hamlett, Alison Smith, Letitia D Jokubaitis, Vilija G Baker, Josephine Haartsen, Jodi Taylor, Bruce Charlesworth, Jac Bahlo, Melanie Speed, Terence P Brown, Matthew A Field, Judith Baxter, Alan G Butzkueven, Helmut Life Sci Alliance Resources At least 200 single-nucleotide polymorphisms (SNPs) are associated with multiple sclerosis (MS) risk. A key function that could mediate SNP-encoded MS risk is their regulatory effects on gene expression. We performed microarrays using RNA extracted from purified immune cell types from 73 untreated MS cases and 97 healthy controls and then performed Cis expression quantitative trait loci mapping studies using additive linear models. We describe MS risk expression quantitative trait loci associations for 129 distinct genes. By extending these models to include an interaction term between genotype and phenotype, we identify MS risk SNPs with opposing effects on gene expression in cases compared with controls, namely, rs2256814 MYT1 in CD4 cells (q = 0.05) and rs12087340 RF00136 in monocyte cells (q = 0.04). The rs703842 SNP was also associated with a differential effect size on the expression of the METTL21B gene in CD8 cells of MS cases relative to controls (q = 0.03). Our study provides a detailed map of MS risk loci that function by regulating gene expression in cell types relevant to MS. Life Science Alliance LLC 2020-06-09 /pmc/articles/PMC7283543/ /pubmed/32518073 http://dx.doi.org/10.26508/lsa.202000650 Text en © 2020 Gresle et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Resources Gresle, Melissa M Jordan, Margaret A Stankovich, Jim Spelman, Tim Johnson, Laura J Laverick, Louise Hamlett, Alison Smith, Letitia D Jokubaitis, Vilija G Baker, Josephine Haartsen, Jodi Taylor, Bruce Charlesworth, Jac Bahlo, Melanie Speed, Terence P Brown, Matthew A Field, Judith Baxter, Alan G Butzkueven, Helmut Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
title | Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
title_full | Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
title_fullStr | Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
title_full_unstemmed | Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
title_short | Multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
title_sort | multiple sclerosis risk variants regulate gene expression in innate and adaptive immune cells |
topic | Resources |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283543/ https://www.ncbi.nlm.nih.gov/pubmed/32518073 http://dx.doi.org/10.26508/lsa.202000650 |
work_keys_str_mv | AT greslemelissam multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT jordanmargareta multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT stankovichjim multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT spelmantim multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT johnsonlauraj multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT lavericklouise multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT hamlettalison multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT smithletitiad multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT jokubaitisvilijag multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT bakerjosephine multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT haartsenjodi multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT taylorbruce multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT charlesworthjac multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT bahlomelanie multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT speedterencep multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT brownmatthewa multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT fieldjudith multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT baxteralang multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells AT butzkuevenhelmut multiplesclerosisriskvariantsregulategeneexpressionininnateandadaptiveimmunecells |