Cargando…

Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier

The formation of the soluble polysulfides (Na(2)S(n), 4 ≤ n ≤ 8) causes poor cycling performance for room temperature sodium–sulfur (RT Na–S) batteries. Moreover, the formation of insoluble polysulfides (Na(2)S(n), 2 ≤ n < 4) can slow down the reaction kinetics and terminate the discharge reactio...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Qiubo, Li, Shuang, Liu, Xuejun, Lu, Haochen, Chang, Xiaoqing, Zhang, Hongshen, Zhu, Xiaohui, Xia, Qiuying, Yan, Chenglin, Xia, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284216/
https://www.ncbi.nlm.nih.gov/pubmed/32537400
http://dx.doi.org/10.1002/advs.201903246
_version_ 1783544416669007872
author Guo, Qiubo
Li, Shuang
Liu, Xuejun
Lu, Haochen
Chang, Xiaoqing
Zhang, Hongshen
Zhu, Xiaohui
Xia, Qiuying
Yan, Chenglin
Xia, Hui
author_facet Guo, Qiubo
Li, Shuang
Liu, Xuejun
Lu, Haochen
Chang, Xiaoqing
Zhang, Hongshen
Zhu, Xiaohui
Xia, Qiuying
Yan, Chenglin
Xia, Hui
author_sort Guo, Qiubo
collection PubMed
description The formation of the soluble polysulfides (Na(2)S(n), 4 ≤ n ≤ 8) causes poor cycling performance for room temperature sodium–sulfur (RT Na–S) batteries. Moreover, the formation of insoluble polysulfides (Na(2)S(n), 2 ≤ n < 4) can slow down the reaction kinetics and terminate the discharge reaction before it reaches the final product. In this work, coffee residue derived activated ultramicroporous coffee carbon (ACC) material loading with small sulfur molecules (S(2–4)) as cathode material for RT Na–S batteries is reported. The first principle calculations indicate the space confinement of the slit ultramicropores can effectively suppress the formation of polysulfides (Na(2)S(n), 2 ≤ n ≤ 8). Combining with in situ UV/vis spectroscopy measurements, one‐step reaction RT Na–S batteries with Na(2)S as the only and final discharge product without polysulfides formation are demonstrated. As a result, the ultramicroporous carbon loaded with 40 wt% sulfur delivers a high reversible specific capacity of 1492 mAh g(−1) at 0.1 C (1 C = 1675 mA g(−1)). When cycled at 1 C rate, the carbon–sulfur composite electrode exhibits almost no capacity fading after 2000 cycles with 100% coulombic efficiency, revealing excellent cycling stability and reversibility. The superb cycling stability and rate performance demonstrate ultramicropore confinement can be an effective strategy to develop high performance cathode for RT Na–S batteries.
format Online
Article
Text
id pubmed-7284216
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-72842162020-06-11 Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier Guo, Qiubo Li, Shuang Liu, Xuejun Lu, Haochen Chang, Xiaoqing Zhang, Hongshen Zhu, Xiaohui Xia, Qiuying Yan, Chenglin Xia, Hui Adv Sci (Weinh) Full Papers The formation of the soluble polysulfides (Na(2)S(n), 4 ≤ n ≤ 8) causes poor cycling performance for room temperature sodium–sulfur (RT Na–S) batteries. Moreover, the formation of insoluble polysulfides (Na(2)S(n), 2 ≤ n < 4) can slow down the reaction kinetics and terminate the discharge reaction before it reaches the final product. In this work, coffee residue derived activated ultramicroporous coffee carbon (ACC) material loading with small sulfur molecules (S(2–4)) as cathode material for RT Na–S batteries is reported. The first principle calculations indicate the space confinement of the slit ultramicropores can effectively suppress the formation of polysulfides (Na(2)S(n), 2 ≤ n ≤ 8). Combining with in situ UV/vis spectroscopy measurements, one‐step reaction RT Na–S batteries with Na(2)S as the only and final discharge product without polysulfides formation are demonstrated. As a result, the ultramicroporous carbon loaded with 40 wt% sulfur delivers a high reversible specific capacity of 1492 mAh g(−1) at 0.1 C (1 C = 1675 mA g(−1)). When cycled at 1 C rate, the carbon–sulfur composite electrode exhibits almost no capacity fading after 2000 cycles with 100% coulombic efficiency, revealing excellent cycling stability and reversibility. The superb cycling stability and rate performance demonstrate ultramicropore confinement can be an effective strategy to develop high performance cathode for RT Na–S batteries. John Wiley and Sons Inc. 2020-04-22 /pmc/articles/PMC7284216/ /pubmed/32537400 http://dx.doi.org/10.1002/advs.201903246 Text en © 2020 The Authors. Advanced Science published by Wiley‐VCH Verlag GmbH & Co. KGaA This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Guo, Qiubo
Li, Shuang
Liu, Xuejun
Lu, Haochen
Chang, Xiaoqing
Zhang, Hongshen
Zhu, Xiaohui
Xia, Qiuying
Yan, Chenglin
Xia, Hui
Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier
title Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier
title_full Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier
title_fullStr Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier
title_full_unstemmed Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier
title_short Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier
title_sort ultrastable sodium–sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284216/
https://www.ncbi.nlm.nih.gov/pubmed/32537400
http://dx.doi.org/10.1002/advs.201903246
work_keys_str_mv AT guoqiubo ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT lishuang ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT liuxuejun ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT luhaochen ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT changxiaoqing ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT zhanghongshen ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT zhuxiaohui ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT xiaqiuying ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT yanchenglin ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier
AT xiahui ultrastablesodiumsulfurbatterieswithoutpolysulfidesformationusingslitultramicroporecarboncarrier