Cargando…
Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms
The ever‐growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand‐new nanophotonic approaches...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284221/ https://www.ncbi.nlm.nih.gov/pubmed/32537397 http://dx.doi.org/10.1002/advs.201903049 |
_version_ | 1783544417610629120 |
---|---|
author | Canós Valero, Adrià Kislov, Denis Gurvitz, Egor A. Shamkhi, Hadi K. Pavlov, Alexander A. Redka, Dmitrii Yankin, Sergey Zemánek, Pavel Shalin, Alexander S. |
author_facet | Canós Valero, Adrià Kislov, Denis Gurvitz, Egor A. Shamkhi, Hadi K. Pavlov, Alexander A. Redka, Dmitrii Yankin, Sergey Zemánek, Pavel Shalin, Alexander S. |
author_sort | Canós Valero, Adrià |
collection | PubMed |
description | The ever‐growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand‐new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light−matter interactions. A concept is proposed, featuring dual on‐chip functionality: boosted optically driven diffusion and nanoparticle sorting. High‐index dielectric nanoantennae is specially designed to ensure strongly enhanced spin−orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl−spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam‐based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving‐part‐free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on‐chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving‐part‐free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light‐controlled navigation of nanoparticles, viruses or biomolecules. |
format | Online Article Text |
id | pubmed-7284221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72842212020-06-11 Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms Canós Valero, Adrià Kislov, Denis Gurvitz, Egor A. Shamkhi, Hadi K. Pavlov, Alexander A. Redka, Dmitrii Yankin, Sergey Zemánek, Pavel Shalin, Alexander S. Adv Sci (Weinh) Full Papers The ever‐growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand‐new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light−matter interactions. A concept is proposed, featuring dual on‐chip functionality: boosted optically driven diffusion and nanoparticle sorting. High‐index dielectric nanoantennae is specially designed to ensure strongly enhanced spin−orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl−spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam‐based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving‐part‐free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on‐chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving‐part‐free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light‐controlled navigation of nanoparticles, viruses or biomolecules. John Wiley and Sons Inc. 2020-04-24 /pmc/articles/PMC7284221/ /pubmed/32537397 http://dx.doi.org/10.1002/advs.201903049 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Canós Valero, Adrià Kislov, Denis Gurvitz, Egor A. Shamkhi, Hadi K. Pavlov, Alexander A. Redka, Dmitrii Yankin, Sergey Zemánek, Pavel Shalin, Alexander S. Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms |
title | Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms |
title_full | Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms |
title_fullStr | Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms |
title_full_unstemmed | Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms |
title_short | Nanovortex‐Driven All‐Dielectric Optical Diffusion Boosting and Sorting Concept for Lab‐on‐a‐Chip Platforms |
title_sort | nanovortex‐driven all‐dielectric optical diffusion boosting and sorting concept for lab‐on‐a‐chip platforms |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284221/ https://www.ncbi.nlm.nih.gov/pubmed/32537397 http://dx.doi.org/10.1002/advs.201903049 |
work_keys_str_mv | AT canosvaleroadria nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT kislovdenis nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT gurvitzegora nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT shamkhihadik nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT pavlovalexandera nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT redkadmitrii nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT yankinsergey nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT zemanekpavel nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms AT shalinalexanders nanovortexdrivenalldielectricopticaldiffusionboostingandsortingconceptforlabonachipplatforms |