Cargando…
Detection of Anomalous Behavior in Modern Smartphones Using Software Sensor-Based Data
This paper describes the steps involved in obtaining a set of relevant data sources and the accompanying method using software-based sensors to detect anomalous behavior in modern smartphones based on machine-learning classifiers. Three classes of models are investigated for classification: logistic...
Autores principales: | Vlădăreanu, Victor, Voiculescu, Valentin-Gabriel, Grosu, Vlad-Alexandru, Vlădăreanu, Luige, Travediu, Ana-Maria, Yan, Hao, Wang, Hongbo, Ruse, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284384/ https://www.ncbi.nlm.nih.gov/pubmed/32413952 http://dx.doi.org/10.3390/s20102768 |
Ejemplares similares
-
A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform
por: Elbagoury, Bassant M., et al.
Publicado: (2023) -
Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots
por: Yan, Hao, et al.
Publicado: (2019) -
Neuro-Fuzzy Modelling of the Metallic Surface Characterization on Linear Dry Contact between Plastic Material Reinforced with SGF and Alloyed Steel
por: Vlădăreanu, Victor, et al.
Publicado: (2018) -
Advanced Intelligent Control through Versatile Intelligent Portable Platforms
por: Vladareanu, Luige
Publicado: (2020) -
New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors
por: Feng, Yongfei, et al.
Publicado: (2019)