Cargando…
Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields
Site-specific weed management and selective application of herbicides as eco-friendly techniques are still challenging tasks to perform, especially for densely cultivated crops, such as rice. This study is aimed at developing a stereo vision system for distinguishing between rice plants and weeds an...
Autores principales: | Dadashzadeh, Mojtaba, Abbaspour-Gilandeh, Yousef, Mesri-Gundoshmian, Tarahom, Sabzi, Sajad, Hernández-Hernández, José Luis, Hernández-Hernández, Mario, Arribas, Juan Ignacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284472/ https://www.ncbi.nlm.nih.gov/pubmed/32349459 http://dx.doi.org/10.3390/plants9050559 |
Ejemplares similares
-
Estimation of Soil Surface Roughness Using Stereo Vision Approach
por: Azizi, Afshin, et al.
Publicado: (2021) -
An automatic visible-range video weed detection, segmentation and classification prototype in potato field
por: Sabzi, Sajad, et al.
Publicado: (2020) -
Determination of physical and mechanical properties of carrot in order to reduce waste during harvesting and post‐harvesting
por: Jahanbakhshi, Ahmad, et al.
Publicado: (2018) -
A Computer Vision System Based on Majority-Voting Ensemble Neural Network for the Automatic Classification of Three Chickpea Varieties
por: Pourdarbani, Razieh, et al.
Publicado: (2020) -
Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed‐free period
por: Horvath, David P., et al.
Publicado: (2018)