Cargando…
Multi-Level Cross Residual Network for Lung Nodule Classification
Computer-aided algorithm plays an important role in disease diagnosis through medical images. As one of the major cancers, lung cancer is commonly detected by computer tomography. To increase the survival rate of lung cancer patients, an early-stage diagnosis is necessary. In this paper, we propose...
Autores principales: | Lyu, Juan, Bi, Xiaojun, Ling, Sai Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284728/ https://www.ncbi.nlm.nih.gov/pubmed/32429401 http://dx.doi.org/10.3390/s20102837 |
Ejemplares similares
-
Classification of Lung Nodules Based on Deep Residual Networks and Migration Learning
por: Wu, Panpan, et al.
Publicado: (2020) -
A diagnostic classification of lung nodules using multiple-scale residual network
por: Wang, Hongfeng, et al.
Publicado: (2023) -
Lung nodule segmentation via semi-residual multi-resolution neural networks
por: Wang, Chenyang, et al.
Publicado: (2023) -
3D multi-view convolutional neural networks for lung nodule classification
por: Kang, Guixia, et al.
Publicado: (2017) -
Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning
por: Usman, Muhammad, et al.
Publicado: (2020)