Cargando…

Preparation of Nanocomposite Alginate Fibers Modified with Titanium Dioxide and Zinc Oxide

Active dressings based on natural polymers are becoming increasingly popular on the market. One of such polymers is alginate, which is characterized by biodegradability, resorbability, has no carcinogenic properties, does not have allergenic or hemostatic properties, and has a confirmed lack of toxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Borkowski, Dominik, Krucińska, Izabella, Draczyński, Zbigniew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284735/
https://www.ncbi.nlm.nih.gov/pubmed/32370261
http://dx.doi.org/10.3390/polym12051040
Descripción
Sumario:Active dressings based on natural polymers are becoming increasingly popular on the market. One of such polymers is alginate, which is characterized by biodegradability, resorbability, has no carcinogenic properties, does not have allergenic or hemostatic properties, and has a confirmed lack of toxicity. However, this polymer does not show biocidal and biostatic properties, therefore the purpose of this research was to select the appropriate conditions for the production of calcium alginate fibers modified with nano titanium dioxide and nano zinc oxide. It was assumed that the presence of nano metal oxide fillers will give antibacterial properties to formed fibers, which were used to form nonwovens. The following article presents a comparative analysis of nonwovens made of alginate fibers, without nano additives, with nonwovens made of alginate fibers containing in their structure 7% titanium dioxide and nonwovens made of alginate fibers containing 2% ZnO. The selection of the nano additive content was determined by the spinning ability of the developed polymer solutions. Based on the results contained in the article, it was found that the introduction of modifiers in the structure of fibers increases the diameter of the fiber pores, which improves the sorption and retention properties of the obtained fibers, and also gives differentiated antibacterial properties to the obtained nonwovens depending on the type of nano additive used. Greater activity against Escherichia coli, Staphylococcus aureus strains and Aspergillus Niger molds was shown in nonwovens made of 2% ZnO modified fibers compared to nonwovens made from TiO(2) modified fibers.