Cargando…

Comparative Analysis of Fungal Diversity in Rhizospheric Soil from Wild and Reintroduced Magnolia sinica Estimated via High-Throughput Sequencing

Magnolia sinica is a critically endangered species and considered a “plant species with extremely small populations” (PSESP). It is an endemic species in southeastern Yunnan Province, China, with reproductive barriers. Rhizosphere fungi play a crucial role in plant growth and health. However, the co...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Qingqing, Yang, Junyu, Su, Daifa, Li, Zhiying, Xiao, Wei, Wang, Yongxia, Cui, Xiaolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284792/
https://www.ncbi.nlm.nih.gov/pubmed/32397167
http://dx.doi.org/10.3390/plants9050600
Descripción
Sumario:Magnolia sinica is a critically endangered species and considered a “plant species with extremely small populations” (PSESP). It is an endemic species in southeastern Yunnan Province, China, with reproductive barriers. Rhizosphere fungi play a crucial role in plant growth and health. However, the composition, diversity, and function of fungal communities in wild and reintroduced M. sinica rhizospheres remain unknown. In this study, Illumina sequencing of the internal transcribed spacer 2 (ITS2) region was used to analyze rhizospheric soil samples from wild and reintroduced M. sinica. Thirteen phyla, 45 classes, 105 orders, 232 families, and 433 genera of fungi were detected. Basidiomycota and Ascomycota were dominant across all samples. The fungal community composition was similar between the wild and reintroduced rhizospheres, but the fungal taxa relative abundances differed. The fungal community richness was higher in the reintroduced rhizosphere than in the wild rhizosphere, but the diversity showed the opposite pattern. Soil nutrients and leaf litter significantly affected the fungal community composition and functional diversity. Here, the composition, structure, diversity, and ecological functions of the fungal communities in the rhizospheres of wild and reintroduced M. sinica were elucidated for the first time, laying a foundation for future research and endangered species protection.