Cargando…

In-Depth Characterization of EpiIntestinal Microtissue as a Model for Intestinal Drug Absorption and Metabolism in Human

The Caco-2 model is a well-accepted in vitro model for the estimation of fraction absorbed in human intestine. Due to the lack of cytochrome P450 3A4 (CYP3A4) activities, Caco-2 model is not suitable for the investigation of intestinal first-pass metabolism. The purpose of this study is to evaluate...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Yunhai, Claus, Stephanie, Schnell, David, Runge, Frank, MacLean, Caroline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284918/
https://www.ncbi.nlm.nih.gov/pubmed/32354111
http://dx.doi.org/10.3390/pharmaceutics12050405
Descripción
Sumario:The Caco-2 model is a well-accepted in vitro model for the estimation of fraction absorbed in human intestine. Due to the lack of cytochrome P450 3A4 (CYP3A4) activities, Caco-2 model is not suitable for the investigation of intestinal first-pass metabolism. The purpose of this study is to evaluate a new human intestine model, EpiIntestinal microtissues, as a tool for the prediction of oral absorption and metabolism of drugs in human intestine. The activities of relevant drug transporters and drug metabolizing enzymes, including MDR1 P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), CYP3A4, CYP2J2, UDP-glucuronosyltransferases (UGT), carboxylesterases (CES), etc., were detected in functional assays with selective substrates and inhibitors. Compared to Caco-2, EpiIntestinal microtissues proved to be a more holistic model for the investigation of drug absorption and metabolism in human gastrointestinal tract.