Cargando…
A Novel Approach to 3D-DOA Estimation of Stationary EM Signals Using Convolutional Neural Networks
This paper proposes a novel three-dimensional direction-of-arrival (3D-DOA) estimation method for electromagnetic (EM) signals using convolutional neural networks (CNN) in a Gaussian or non-Gaussian noise environment. First of all, in the presence of Gaussian noise, four output covariance matrices o...
Autores principales: | Chen, Dong, Joo, Young Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285076/ https://www.ncbi.nlm.nih.gov/pubmed/32408661 http://dx.doi.org/10.3390/s20102761 |
Ejemplares similares
-
DOA Estimation Method Based on Improved Deep Convolutional Neural Network
por: Zhao, Fangzheng, et al.
Publicado: (2022) -
Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array
por: Wang, Ben, et al.
Publicado: (2017) -
Super resolution DOA estimation based on deep neural network
por: Liu, Wanli
Publicado: (2020) -
EM and SAGE Algorithms for DOA Estimation in the Presence of Unknown Uniform Noise
por: Gong, Ming-Yan, et al.
Publicado: (2023) -
Tensor Approach to DOA Estimation of Coherent Signals with Electromagnetic Vector-Sensor Array
por: Cao, Ming-Yang, et al.
Publicado: (2018)