Cargando…
Identification of a Robust Five-Gene Risk Model in Prostate Cancer: A Robust Likelihood-Based Survival Analysis
AIM: In this paper, we aimed to develop and validate a risk prediction method using independent prognosis genes selected robustly in prostate cancer. METHOD: We considered 723 samples obtained from TCGA (the Cancer Genome Atlas), GSE46602, and GSE21032. Prostate cancer prognosis-related genes with P...
Autores principales: | Wang, Yutao, Lin, Jiaxing, Yan, Kexin, Wang, Jianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285394/ https://www.ncbi.nlm.nih.gov/pubmed/32566639 http://dx.doi.org/10.1155/2020/1097602 |
Ejemplares similares
-
Three-gene risk model in papillary renal cell carcinoma: a robust likelihood-based survival analysis
por: Wang, Yutao, et al.
Publicado: (2020) -
A robust 11-genes prognostic model can predict overall survival in bladder cancer patients based on five cohorts
por: Lin, Jiaxing, et al.
Publicado: (2020) -
Identification of core genes associated with prostate cancer progression and outcome via bioinformatics analysis in multiple databases
por: Wang, Yutao, et al.
Publicado: (2020) -
Multiple robustness in factorized likelihood models
por: Molina, J., et al.
Publicado: (2017) -
Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
por: de Lima, Igo Pedro, et al.
Publicado: (2020)