Cargando…
A Global Inhomogeneous Intensity Clustering- (GINC-) Based Active Contour Model for Image Segmentation and Bias Correction
Image segmentation is still an open problem especially when intensities of the objects of interest are overlapped due to the presence of intensity inhomogeneities. A bias correction embedded level set model is proposed in this paper where inhomogeneities are estimated by orthogonal primary functions...
Autores principales: | Feng, Chaolu, Yang, Jinzhu, Lou, Chunhui, Li, Wei, Yu, Kun, Zhao, Dazhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285411/ https://www.ncbi.nlm.nih.gov/pubmed/32565883 http://dx.doi.org/10.1155/2020/7595174 |
Ejemplares similares
-
An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation
por: Huang, Chencheng, et al.
Publicado: (2015) -
Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation
por: Soomro, Shafiullah, et al.
Publicado: (2016) -
Segmentation of Intensity Inhomogeneous Brain MR Images Using Active Contours
por: Akram, Farhan, et al.
Publicado: (2014) -
Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity
por: Akram, Farhan, et al.
Publicado: (2017) -
A fast two-stage active contour model for intensity inhomogeneous image segmentation
por: Song, Yangyang, et al.
Publicado: (2019)