Cargando…
AutoDiscern: rating the quality of online health information with hierarchical encoder attention-based neural networks
BACKGROUND: Patients increasingly turn to search engines and online content before, or in place of, talking with a health professional. Low quality health information, which is common on the internet, presents risks to the patient in the form of misinformation and a possibly poorer relationship with...
Autores principales: | Kinkead, Laura, Allam, Ahmed, Krauthammer, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285491/ https://www.ncbi.nlm.nih.gov/pubmed/32517759 http://dx.doi.org/10.1186/s12911-020-01131-z |
Ejemplares similares
-
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
por: Schwarz, Kyriakos, et al.
Publicado: (2021) -
Learning to Discern Images Modifies Neural Activity
Publicado: (2004) -
Discernment
Publicado: (1878) -
Internet chemotherapy information is of good quality: assessment with the DISCERN tool
por: Som, R, et al.
Publicado: (2012) -
Neural networks versus Logistic regression for 30 days all-cause readmission prediction
por: Allam, Ahmed, et al.
Publicado: (2019)